F-N-R gearbox with spur-gear differential

A differential is a gear train with three shafts that has the property that the angular velocity of one shaft is the average of the angular velocities of the others, or a fixed multiple of that average. In automobiles and other wheeled vehicles, the differential allows the outer drive wheel to rotate faster than the inner drive wheel during a turn. This is necessary when the vehicle turns, making the wheel that is traveling around the outside of the turning curve roll farther and faster than the other. The average of the rotational speed of the two driving wheels equals the input rotational speed of the drive shaft. An increase in the speed of one wheel is balanced by a decrease in the speed of the other. When used in this way, a differential couples the input shaft (or prop shaft) to the pinion, which in turn runs on the ring gear of the differential. This also works as reduction gearing. On rear wheel drive vehicles the differential may connect to half-shafts inside an axle housing, or drive shafts that connect to the rear driving wheels. Front wheel drive vehicles tend to have the pinion on the end of the main-shaft of the gearbox and the differential is enclosed in the same housing as the gearbox. There are individual drive-shafts to each wheel.

A differential consists of one input, the drive shaft, and two outputs which are the two drive wheels, however the rotation of the drive wheels are coupled to each other by their connection to the roadway. Under normal conditions, with small tire slip, the ratio of the speeds of the two driving wheels is defined by the ratio of the radii of the paths around which the two wheels are rolling, which in turn is determined by the track-width of the vehicle (the distance between the driving wheels) and the radius of the turn. Non-automotive uses of differentials include performing analog arithmetic. Two of the differential’s three shafts are made to rotate through angles that represent (are proportional to) two numbers, and the angle of the third shaft’s rotation represents the sum or difference of the two input numbers. The earliest known use of a differential gear is in the Antikythera mechanism, circa 80 BCE, which used a differential gear to control a small sphere representing the moon from the difference between the sun and moon position pointers. The ball was painted black and white in hemispheres, and graphically showed the phase of the moon at a particular point in time. See also the Chinese South-pointing chariot. An equation clock that used a differential for addition was made in 1720. In the 20th Century, large assemblies of many differentials were used as analog computers, calculating, for example, the direction in which a gun should be aimed. However, the development of electronic digital computers has made these uses of differentials obsolete. Military uses may still exist, for example, for a hypothetical computer designed to survive an electromagnetic pulse. Practically all the differentials that are now made are used in automobiles and similar vehicles.

Power transmission is an inevitable part in any automobile. The power from the prime mover (engine/motor) is transferred to the wheels using a suitable transmission system. Various designs of gearbox have been developed in the past. In this paper, an F-N-R (forward-neutral-reverse) gearbox with a compact spur-gear differential is designed by following the design parameters for spur gear, for the required output torque of a vehicle. All the gears and casing for the gearbox is modeled using Solidworks tool. A simple and user-friendly shifting mechanism is designed for the gearbox, adding to comfort. A new spur-gear differential is designed, having spur gears to accomplish differential action, which is more compact and light-weight compared to a conventional differential, since the heavy bevel gear assembly is omitted. Different analyses such as static, dynamic (time-dependent), contact, modal and fatigue analyses are done using ANSYS software. The main objective is to design and fabricate a light-weight, efficient and compact F-N-R gearbox as a replacement to current models.

In this study, an in-wheel motor torque control strategy was proposed for a 4-wheel drive in-wheel type electric vehicle by considering the rollover risk, vehicle driving and handling performance. LTR (lateral load transfer ratio), which is the rollover index, is significantly relevant to the vehicle lateral acceleration. For reducing the rollover risk, the vehicle lateral acceleration must be decreased. Lateral acceleration depends on the vehicle speed and turning radius. These factors can be controlled by the in-wheel motor torque control. To develop the in-wheel motor torque control strategy, the LTR was calculated from the vehicle dynamics to estimate the rollover. Threshold of LTR was introduced using the vehicle specifiations. LTR error which is the difference between the threshold of LTR and actual LTR was used to control the front and rear motor torques. Motor control strategy was composed of two parts: First, to reduce the vehicle velocity, output torque of the in-wheel motors at all wheels were reduced depending on the amount of the LTR error. In addition, co-operative braking control was performed using the electro-hydraulic braking system. Second, to improve the handling performance, additional output torque control of the front in-wheel motors were carried out. Through the simulation results, it was found that the rollover risk was decreased as much as 30% by the in-wheel motor torque control compared to that of no control